91 research outputs found

    The effects of fibre pre-stressing on the impact performance of composite laminates

    Get PDF
    This thesis has presented the results and findings of a study carried out into the effects of fibre pre-stressing on the impact performance of composite laminates. Fibre prestress has been explained as a way of mechanically altering the internal residual stress state of a composite, which typically is a result of thermal, moisture and chemical expansions. It has been suggested that pre-stressing can offer potential benefits to composites by reducing or reversing the hygro-thermal stresses in a composite. It has also been suggested that the impact performance could be improved through fibre prestressing, which has given rise to this study. In this study panels have been made with various levels of pre-stress. A special system was developed to apply pre-stress to the laminates and the produced laminates were tested under low- and high-velocity impact regimes. To apply these regimes, an instrumented falling weight and a gas gun were used respectively. A short finite element study was carried out to supplement the experimental study and offer further insight into the failure mechanics. The main findings of the study were that although pre-stressing had no discernable effect on the high-velocity impact performance of the composite laminate considered, there was a noted effect on the low-velocity impact performance. Under low-velocity impacts the laminate showed an improved impact performance for increase levels of pre-stress, except at one critical pre-stress level (60 MPa), where the laminate absorbed less energy per damage area compared with unpre-stressed laminates.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    From capability to concept : fusion of systems analysis techniques for derivation of future soldier systems

    Get PDF
    The intent of this thesis is to define a set of processes for use within UK Government dismounted soldier systems research that will provide stakeholders with auditable and traceable information to understand gaps in military capability and justify future procurement decisions. The need for this approach is linked to organisational shifts within the UK Ministry of Defence, and more specifically Government research with the move towards procurement of capability rather than equipment. In conjunction with reducing defence budgets and increased scrutiny, there is a need to prioritise spending to those areas that will provide the most significant enhancement to operational effectiveness. The proposed process suite provides underpinning data to support Government decisions, from definition of military need through to concept design and prioritisation of future research activities. The approach is grounded in the field of systems thinking and systems engineering providing the logical and systematic constructs required for highly complex systems where the human is a central focus. A novel fusion of existing systems tools and techniques enables both subjective data from domain experts and objective data in the form of operational analysis and field trials to be utilised for analysis across the five NATO capability domains, with output defining the relative importance of survivability, sustainability, mobility, lethality and C4I in the context of operational and strategic level military goals as well as wider challenges represented by the doctrinal defence lines of development. Future developments should include alignment with developing pan-MoD initiatives in the form of MODAF, if required by the customer organisation. This would enable generic versions of the process suite to be applied to any defence domain and problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    Shunting Inhibition Controls the Gain Modulation Mediated by Asynchronous Neurotransmitter Release in Early Development

    Get PDF
    The sensitivity of a neuron to its input can be modulated in several ways. Changes in the slope of the neuronal input-output curve depend on factors such as shunting inhibition, background noise, frequency-dependent synaptic excitation, and balanced excitation and inhibition. However, in early development GABAergic interneurons are excitatory and other mechanisms such as asynchronous transmitter release might contribute to regulating neuronal sensitivity. We modeled both phasic and asynchronous synaptic transmission in early development to study the impact of activity-dependent noise and short-term plasticity on the synaptic gain. Asynchronous release decreased or increased the gain depending on the membrane conductance. In the high shunt regime, excitatory input due to asynchronous release was divisive, whereas in the low shunt regime it had a nearly multiplicative effect on the firing rate. In addition, sensitivity to correlated inputs was influenced by shunting and asynchronous release in opposite ways. Thus, asynchronous release can regulate the information flow at synapses and its impact can be flexibly modulated by the membrane conductance

    VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

    Get PDF
    Synaptic vesicles in the brain harbor several soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins. With the exception of synaptobrevin2, or VAMP2 (syb2), which is directly involved in vesicle fusion, the role of these SNAREs in neurotransmission is unclear. Here we show that in mice syb2 drives rapid Ca2+-dependent synchronous neurotransmission, whereas the structurally homologous SNARE protein VAMP4 selectively maintains bulk Ca2+-dependent asynchronous release. At inhibitory nerve terminals, up- or downregulation of VAMP4 causes a correlated change in asynchronous release. Biochemically, VAMP4 forms a stable complex with SNAREs syntaxin-1 and SNAP-25 that does not interact with complexins or synaptotagmin-1, proteins essential for synchronous neurotransmission. Optical imaging of individual synapses indicates that trafficking of VAMP4 and syb2 show minimal overlap. Taken together, these findings suggest that VAMP4 and syb2 diverge functionally, traffic independently and support distinct forms of neurotransmission. These results provide molecular insight into how synapses diversify their release properties by taking advantage of distinct synaptic vesicle–associated SNAREs
    • …
    corecore